Name:	Date:	
WORKSHEET : Arithmetic Sequences		
Arithemetic Sequence $A_n = A_1 + d(n - 1)$	Identify the common difference, d.	
1) 1, 4, 7,	2) 8, 6, 4,	
3) 17, 21, 25, 29	4) 1, 3, 6, 10,	
Arithemetic Sequence $A_n = A_1 + d(n - 1)$ 5) 1, 2, 3, 4 $A_{57} = ?$	Find the <i>n</i> th term in the sequence, A_n . 6) -5, -2, 1, $A_{15} = ?$	
7) 10, 5, 0, $A_{21} = ?$	7) 15, 13, 11, $A_{15} = ?$	
8) 6, 13, 20, $A_{12} = ?$	9) 5, 2, -1, $A_{15} = ?$	
Arithemetic Sequence $A_n = A_1 + d(n - 1)$ 10) 8, 10, 12,96, 98	Find the number of terms, n 11) -1, 0, 1, 2,37, 38	
12) 5, 10, 15,200, 205	13) -1, -4, -731, -34	
14) 8, 4, 0,24, -28	15) 2, 4, 6, 8,22, 24	

Geometric Sequences

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

- 1) 1, 2, 4, ...
- 3) -1/3, 1, -3, 9....
- 5) 1, -2, 4, -8, ...

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

- 7) 1, 2, 4, ... $A_{10} = ?$
- 9) -1/3, 1, -3, 9.... A₇ = ?
- 11) 1, -2, 4, -8, ... $A_9 = ?$

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

13) 1, 2, 4, ... 512, 1024

Identify the common multiplier, r.

- 2) 8, 4, 2, ...
- 4) 1, 1/2, 1/4, ...
- 6) 625, 25, 5, ...

Find the *n*th term in the sequence, A_n .

- 8) 8, 4, 2, ... $A_{11} = ?$
- 10) 1, 1/2, 1/4, ... $A_{11} = ?$
- 12) 625, 25, 5, ... $A_7 = ?$

Find the number of terms, n.

14) 1/27, 1/9, 1/3,...27, 81

ANSWERS:

Arithemetic Sequence $A_n = A_1 + d(n - 1)$

- 1) 1, 4, 7, ... d = +3
- 3) 17, 21, 25, 29.... d = +4

Identify the common difference, d.

2) 8, 6, 4, ... d = -2

4) 1, 3, 6, 10, The sequence is not arithemtic. i.e. there is no common difference.

Arithemetic Sequence $A_n = A_1 + d(n - 1)$

- 1, 2, 3, 4... $A_{57} = 1 + 1(57 1) = 1(57 1) = 1(57$ 5) 56 = 57
- 7) 100 = -90
- 8) 7(11) = 83

Arithemetic Sequence $A_n = A_1 + d(n - 1)$

- 10) 8, 10, 12,...96, 98 98 = 8 + 2(n - 1) = 8 + 2n - 22n = 98 - 8 + 2 = 92n = 92/2 = 46 terms
- 12) 5, 10, 15,...200, 205 205 = 5 + 5(n - 1) = 5 + 5n - 55n = 205n = 205/5 = 41 terms
- 14) 8, 4, 0,...-24, -28 -28 = 8 - 4(n - 1) = 8 - 4n + 4-4n = -28 - 8 - 4 = -40n = -40/4 = 10 terms

6) -5, -2, 1, ... $A_{15} = -5 + 3(15 - 1) = -5$ +42 = 37

Find the *n*th term in the sequence, A_n .

- 10, 5, 0, ... $A_{21} = 10 5(21 1) = 10 7$) 15, 13, 11, ... $A_{15} = 15 2(15 1) = 15$ -2(14) = -13
- 6, 13, 20,... $A_{12} = 6 + 7(12 1) = 6 + 9$ 5, 2, -1, ... $A_{15} = 5 3(15 1) = 5 6$ 3(14) = -37

Find the number of terms, n

11) -1, 0, 1, 2, ...37, 38 38 = -1 + 1(n - 1) = -1 + n - 1n = 38 + 1 + 1 = 40 terms

13) -1, -4, -7...-31, -34 -34 = -1 - 3(n - 1) = -1 - 3n + 3-3n = -34 + 1 - 3 = -36n = -36/-3 = 12 terms

15) 2, 4, 6, 8, ...22, 24 24 = 2 + 2(n - 1) = 2 + 2n - 22n = 24n = 24/2 = 12 terms

ANSWERS:

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

- 1) 1, 2, 4, ... r = 2
- 3) -1/3, 1, -3, 9..., r = -3
- 5) 1, -2, 4, -8, ... r = -2

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

7) 1, 2, 4, ... $A_{10} = 1 \times 2^{10-1} = 2^9 = 512$

11) 1, -2, 4, -8, ... $A_9 = 1 \times (-2)^{9-1} = (-2)^8$ = -256

Geometric Sequence $A_n = A_1 \times r^{(n-1)}$

13) 1, 2, 4, ... 512, 1024 $1,024 = 1 \times 2^{n-1} = 1 \times 2^{n}/2^{1}$ 2,048 = 1 × 2ⁿ 2,048 = 1 × 2¹¹ n = 11

Identify the common multiplier, r.

- 2) 8, 4, 2, ... r = 1/2
- 4) 1, 1/2, 1/4, ... r = 1/2
- 6) 625, 25, 5, ... r = 1/5

Find the *n*th term in the sequence, A_n .

8) 8, 4, 2, ... $A_{11} = 8 \times (1/2)^{11-1} = 8/2^{10} = 2^{3}/2^{10} = 2^{-7} = 1/128$ 9) -1/3, 1, -3, 9..., $A_7 = -1/3 \times (-3)^{7-1} = (-10)$ 1, 1/2, 1/4, ... $A_{11} = 1 \times (1/2)^{11-1} = 1/2^{10} = 1,024$ 12) 625, 25, 5, ... $A_7 = 625 \times (1/5)^{7-1} = 5^3 \times 1/5^6 = 5^{3-6} = 5^{-3} = 1/625$

Find the number of terms, n.

14) 1/27, 1/9, 1/3,...27, 81 $81 = 1/27 \times 3^{n-1} = 3^{-3} \times 3^{n}/3^{1}$ $81 \times 3 = 3^{-3} \times 3^{n}$ $243 \times 3^{3} = 3^{n}$ $3^{5} \times 3^{3} = 3^{n}$ $3^{8} = 3^{n}$ n = 8

KEY CONCEPTS:

A sequence is a set of numbers where every term is defined by some rule. Two basic rules of sequences are addition and multiplication where each term adds a common amount or multiplies a common amount to the previous term.

1. Arithmetic Sequence -

$\mathbf{A}_{\mathbf{n}} = \mathbf{A}_{1} + \mathbf{d}(\mathbf{n} - 1)$

 $A_n = n$ th term in the sequence

 $A_1 = 1st$ term in the sequence

d = common difference (amount added to each term)

n = number of terms in the sequence

The sequence rule above typically permits the calculation of the *n*th term in an arithmetic sequence. It can also be used to calculate A_1 , d, or n depending on the information provided.

2. Geometric Sequence -

$$\mathbf{A}_{\mathbf{n}} = \mathbf{A}_{1} \times \mathbf{r}^{(\mathbf{n} - 1)}$$

 $A_n = n$ th term in the sequence $A_1 = 1st$ term in the sequence r = common multiplier (amount multiplied to each term) n = number of terms in the sequence

The sequence rule above typically permits the calculation of the *n*th term in a geometric sequence. It can also be used to calculate A_1 , r, or n depending on the information provided.