Name:

Date:

WORKSHEET:

Identify the degree of each polynomial:

Degree

1)
$$x^2 + 3x - 28$$

2)
$$x^4 + 12x^2 + 35$$

3)
$$x^2 - 15x + 56$$

4)
$$x^2 - 8x^5 + 15$$

5)
$$x^3 + 7x - 144$$

6)
$$x^8 - 7x^5 - 144$$

7)
$$x^2 - 2x + 1$$

8)
$$x^2 - y^2$$

9)
$$x^2 - x + y^3 + z^2$$

10)
$$x^2 - y$$

Multiplying Monomials and Polynomials

1)
$$2z^2(8z^2 + 7z - 6)$$

7)
$$2(9b^2 + 7b + 5)$$

8)
$$2(9n^2 + 5nx - 7x^2)$$

4)
$$9d(6d^2 - 4d + 5)$$

5)
$$7s(2s^2 - 6sc + 9c^2)$$

10)
$$9z^3(4z^2 - 6z + 7)$$

Multiplying Binomials

Adding and Subtracting Polynomials

1)
$$(8p^2 - 5p + 7) - (6p^2 - 4 + p^3) - (2p^3 - 9)$$
 6) $(2 + 6x^2) - (7x^3 + 9 - 3x^2) + (5 + 4x)$

6)
$$(2+6x^2) - (7x^3 + 9 - 3x^2) + (5 + 4x)$$

2)
$$(7r^4 + 6r^2 + 5) - (9r^4 - 3 + 2r)$$
 7) $(3x^4 + 4) + (8 + 9x^3 - 7x^4)$

7)
$$(3x^4 + 4) + (8 + 9x^3 - 7x^4)$$

8)
$$(8y^2 - 5y - 4) + (6y - 7) + (9y^4 + 3y^2 - 2y)$$

4)
$$(6b^4 + 9b^3) + (3b^3 - 5b - 4b^4)$$

9)
$$(3 - 2p^3 - 5p^4) + (7p^4 + 6p^2 - 9) + (p^3 + 4p^2 - 8)$$

5)
$$(9 + 2y^2 - 7y^4) + (6y - 3y^4 - 5)$$

5)
$$(9 + 2x^2 - 7x^4) + (6x - 3x^4 - 5)$$
 10) $(9 + z^4 + 7z^5) - (3z^5 - 2 + 5z^4) - (8 - 6z + 4z^4)$

ANSWERS:

Identify the degree of each polynomial:	<u>Degree</u>
1) $x^2 + 3x - 28$	2nd degree
$2) x^4 + 12x^2 + 35$	4th degree
3) $x^2 - 15x + 56$	2nd degree
4) $x^2 - 8x^5 + 15$	5th degree
$5) x^3 + 7x - 144$	3rd degree
$6) x^8 - 7x^5 - 144$	8th degree
7) $x^2 - 2x + 1$	2nd degree
$8) x^2 - y^2$	4th degree
9) $x^2 - x + y^3 + z^2$	7th degree
10) $x^2 - y$	3rd degree

Multiplying Monomials and Polynomials

1)
$$2z^2(8z^2 + 7z - 6)$$

$$16z^4 + 14z^3 - 12z^2$$

7)
$$2(9b^2 + 7b + 5)$$

$$18b^2 + 14b + 10$$

$$36x^2 - 72x$$

8)
$$2(9n^2 + 5nx - 7x^2)$$

$$18n^2 + 10nx - 14x^2$$

4)
$$9d(6d^2 - 4d + 5)$$

$$54d^3 - 36d^2 + 45d$$

5)
$$7s(2s^2 - 6sc + 9c^2)$$

$$14s^3 - 42s^2c + 63c^2s$$

10)
$$9z^3(4z^2 - 6z + 7)$$

$$36z^5 - 54z^4 + 63z^3$$

Multiplying Binomials

$$q^2 + 8q + 15$$

$$8s^2 - 37s + 20$$

$$s^2 + 3s - 40$$

$$n^2 - 5n + 6$$

$$7h^2 + 51h + 54$$

Adding and Subtracting Polynomials

1)
$$(8p^2 - 5p + 7) - (6p^2 - 4 + p^3) - (2p^3 - 9)$$

6) $(2 + 6x^2) - (7x^3 + 9 - 3x^2) + (5 + 4x)$
 $-3p^3 + 2p^2 - 5p + 20$
 $-7x^3 + 9x^2 + 4x - 2$

6)
$$(2 + 6x^2) - (7x^3 + 9 - 3x^2) + (5 + 4x)$$

 $-7x^3 + 9x^2 + 4x - 2$

2)
$$(7r^4 + 6r^2 + 5) - (9r^4 - 3 + 2r)$$

- $2r^4 + 6r^2 - 2r + 8$

7)
$$(3x^4 + 4) + (8 + 9x^3 - 7x^4)$$

- $4x^4 + 9x^3 + 12$

3)
$$(7 - 3s^3) - (5s^3 - 9)$$

 $-8s^3 + 16$

8)
$$(8y^2 - 5y - 4) + (6y - 7) + (9y^4 + 3y^2 - 2y)$$

 $9y^4 + 11y^2 - 1y + -11$

4)
$$(6b^4 + 9b^3) + (3b^3 - 5b - 4b^4)$$

 $2b^4 + 12b^3 - 5b$

9)
$$(3 - 2p^3 - 5p^4) + (7p^4 + 6p^2 - 9) + (p^3 + 4p^2 - 8)$$

 $2p^4 - p^3 + 10p^2 - 14$

5)
$$(9 + 2x^2 - 7x^4) + (6x - 3x^4 - 5)$$

- $10x^4 + 2x^2 + 6x + 4$

10)
$$(9 + z^4 + 7z^5) - (3z^5 - 2 + 5z^4) - (8 - 6z + 4z^4)$$

 $4z^5 - 8z^4 + 6z + 3$

KEY CONCEPTS:

Learn to identify the types and degree of polynomials and how to add, subtract and multiply monomials, binomials, and polynomials.

1. (Numbr of Terms and Degeres) - The type of polynomial is identified by the number of terms. Each type can be further described by degrees.

Monomials have one term. e.g 21, xy^2 , x etc.

Binomials have two terms. e.g. x + 1, $5 + xy^2$, x - y etc. **Polynomials have many terms.** e.g. $x^2 + 2x + 1$, $x^3 + 2x^2 + x - 5$ etc.

- a. The degree of a single variable polynomial is the number of the variable's highest exponent.
- b. $x^2 + 2x + 1$ is a 2nd degree polynomial known as a "quadratric".
- c. $x^3 + 2x^2 + x 5$ is a 3rd degree polynomial known as a "cubic".
- d. $x^4 + 2x^2 + x 5$ is a 4th degree polynomial known as a "quadric".
- e. The degree of a multi variable polynomial is the sum of each variable's highest exponent.
- f. $x^4 + 2y^2 z 5y$ is a 7th degree polynomial; 4 for the x-variable, 2 for the yvariable, and do not forget the implied exponent 1 for the z-variable.
- 2. Multiply monmials, binomial. and polynomials.
 - a. Monomial × Binomial

$$e.g x(5 + y) = 5x + xy$$

b. Binomial × Binomial (FOIL method)

e.g
$$(x - 2)(x - 6) = x^2 - 8x + 12$$

c. Binomial × Polynomial

e.g.
$$(x-2)(x^2-8x+15) = x^3-8x^2+15x-2x^2+16x-30$$

= $x^3-10x^2+31x-30$

3. Add and subtract monmials, binomial. and polynomials. Expand the expression to eliminate parentheses then combine like terms.

a.
$$x^2 - a^2 + 5x^2 - 4a^2 = 6x^2 - 5a^2$$
combine like terms

b.
$$x^2 - a^2 - (5x^2 - 4a^2) = x^2 - a^2 - 5x^2 + 4a^2$$

$$= -4x^2 + 3a^2$$
 first expand the expression to eliminate parentheses
then combine like terms