Name: Date:

WORKSHEET:

Find the LCM and GCF of the following terms:

LCM

<u>GCF</u>

$$y^2$$

$$y^3$$

$$2) \quad x^2y$$

$$8x^3$$

$$3) \quad x^2y$$

$$8yx^2$$

$$4) \qquad 9x^5yz$$

$$24zx^3$$

7)
$$12a^3b^5$$

$$9a^2b^2c^2$$

$$8) \qquad 50a^2c$$

$$225ax^3$$

ANSWERS:

Find the LCM and GCF of the following terms:					
				<u>LCM</u>	<u>GCF</u>
1)	y	y^2	y^3	y^3	y
2)	x^2y	9x	$8x^3$	72yx ³	X
3)	x^2y	2xy	8yx ²	8yx ²	2yx
4)	9x ⁵ yz	30yx	24zx ³	360yzx ⁵	3x
5)	21	9x	3y	63xy	3
6)	15	24	25x	600x	1
7)	$12a^3b^5$	$9a^2b^2c^2$	8ab	$72a^3b^5c^2$	ab
8)	$50a^2c$	125x	225ax ³	$2,250a^2x^3c$	25

KEY CONCEPTS:

Learn to find the LCM and GCF of terms with variables and numerical values.

- 1. The approach is analogous to previous lessons even in the case of variables. First, find the prime factorization and that can be completed as follows with variables
 - a. Reduce numbers and variable terms into their most basic building blocks i.e. to the point where they cannot be factored any further.
 - b. For numbers like 24 that is = $2^3 \cdot 3$
 - c. For variables like x^2y^3 that is = $x \cdot x \cdot y \cdot y \cdot y$.

2. GCF

- a. Find the prime factorization of every term.
- b. Include <u>only</u> the common factors of the prime factorzations including <u>only</u> common variables. If expressed as exponents, this also means use the lowest exponent for common factors even for variables.

e.g GCF(15yx³, 24y²x²z)
Prime Factorization:
$$15yx^3 = 3 \cdot 5 \cdot y \cdot x \cdot x \cdot x$$

 $24y^2x^2z = 2^3 \cdot 3 \cdot y \cdot y \cdot x \cdot x \cdot z$
GCF = $3 \cdot y \cdot x \cdot x = 3yx^2$

Note only 3 is common among numerical prime factors and only 1 y and 2 x's are common among the variables

3. LCM

- a. Find the prime factorization of every term.
- b. Include <u>all distinct</u> factors of the prime factorzations including <u>all distinct</u> variables. Raise each prime factor (including distinct variables) to the highest appearing exponent.

e.g LCM(15yx³, 24y²x²z)
Prime Factorization:

$$15yx^3 = 3 \cdot 5 \cdot y \cdot x^3$$

 $24y^2x^2z = 2^3 \cdot 3 \cdot y^2 \cdot x^2 \cdot z$
LCM = $2^3 \cdot 3 \cdot 5 \cdot y^2 \cdot x^3 \cdot z = 120y^2x^3z$

Note the distinct numerical prime factors are 2,3, and 5 and each is raised to the highest appearing power. The distinct variables are x, y, z and each is raised to the highest appearing power.