

Find the missing angle measurement in each set of supplementary angles
1)

2)

3)

4)

5)

6)

7)

8)

WORKSHEET :

Intro Geometry
(Angles)

Find the missing vertical angles.

2)
$\angle 1=\quad 49^{\circ}$ $\angle 2=-131^{\circ}$
$\angle 3=$ \qquad
\qquad
3)
$1=\quad 52^{\circ}$
$\angle 3=$ \qquad
4)

正
5)

$$
\frac{\angle 2}{\angle 3}
$$

$\angle 1$ \qquad
$\angle 2=$ \qquad
6)

$\angle 1=110^{\circ}$

$\angle 2$	$\angle 1$
$\angle 3$	$\angle 4$

$\angle 3=$ \qquad

WORKSHEET :

Intro Geometry
(Angles)

Find the missing alternate angles.

$\angle 1=$
$\angle 2=$ \qquad $\angle 3=132^{\circ}$
$\angle 4=\quad 48^{\circ}$

4)

5)

6)

Intro Geometry
(Angles)

Find the measure of the missing angle.

Solve for x \qquad
2)

Solve for x \qquad
5)

Solve for x \qquad
3)

Solve for x \qquad

Solve for x \qquad
6)

Solve for x \qquad
7)

Solve for x \qquad
8)

Solve for x \qquad
11)

Solve for x \qquad
\qquad
12)

Solve for x \qquad

Intro Geometry
(Angles)

Classify each angle as acute, obtuse, right, or straight.
1)

6)

\qquad
2) V/

> Acute
7)

Acute
3) \qquad 8)

\qquad
4)

> Acute
9)

Obtuse
5)

\qquad 10)

Acute
11) 90°
Right
16) 122°
Obtuse
12) 91°
Obtuse
17) 152°
Obtuse
13) 54°
Acute
18) 53°
Acute
14) 3°
Acute
19) 180°
Straight
15) 175°
Obtuse
20) 34°
Acute

Find the missing angle measurement in each set of supplementary angles.
1)

2)

3)

4)

5)

6)

7)

8)

Intro Geometry
(Angles)

Find the missing alternate angles.

4)

$\angle 1=\quad 54^{\circ}$
$\angle 2=-126^{\circ}$
$\angle 3=-54^{\circ}$
$\angle 4=-126^{\circ}$

Intro Geometry
(Angles)

Solve for the given variable.
Triangle Angle Sum
1)

5)

2)

6)

3)

$b=117$

4)

8)

Intro Geometry
(Angles)

Find the measure of the missing angle.
1)

Solve for $\mathrm{x} \quad 109^{\circ}$
2)

Solve for $\mathrm{x} \underline{107^{\circ}}$
5)

Solve for $\mathrm{x} \underline{78^{\circ}}$
7)

$$
\text { Solve for } x \quad 51^{\circ}
$$

10)

Solve for $\mathrm{x} 75^{\circ}$
11)

Solve for $\mathrm{x} \quad 116^{\circ}$
3)

Solve for $\mathrm{x} \underline{51^{\circ}}$
6)

Solve for $\mathrm{x} \underline{112^{\circ}}$
9)

Solve for $\mathrm{x} \underline{76^{\circ}}$
12)

Solve for $\mathrm{x} 90^{\circ}$

KEY CONCEPTS:

Learn the basic concepts of angles which measure the amount of turn in degrees (also radians for a later lesson).

1. A full rotation around a circle is $\mathbf{3 6 0}^{\mathbf{}}$. Why 360 ? There are two plausible explanations. One is that the ancient Babylonians and Persians used a 360 day calendar and one degree was the amount the sun moved each day as it traced an annual circle across the sky. The other is that the Babylonians used a base 60 number system and they understood a hexagon was made up of 6 equilateral triangles rotated around a full circle so 360 was a natural multiple of their base counting.
2. Angles are categorized into the following groups.
a. Acute - less than 90°
b. Right - exactly equal to 90°
c. Obtuse - greater than 90° and less than 180°
d. Straight - exactly equal to 180°
e. Reflex - greater than 180°
3. There are three basic angle theorems critical for the exam.
a. Supplementary Angles (also known as angles along a line) sum to 180°.
b. Opposing Vertical Angles are congruent (the same).
c. Alternate Interior Angles (related to transversals where two parallel lines are traversed by a third line) are congruent. e.g. $c=f$ and $d=e$
Likewise, corresponding angles are congruent (e.g. g =c) and alternate exterior angles are congruent (e.g. $\mathrm{a}=\mathrm{h}$).

4. In conjunction with the above three theorems, the sum of interior angles of polygons (e.g. triangles interior angles sum to $\mathbf{1 8 0}^{\boldsymbol{}}$ and quadrilateral interior angles sum to 360°) is often key to finding missing angles on exam problems.
a. Equilateral triangles have the same side lengths and the same interior angle measures; 60°.
b. Isosceles triangles have exactly two sides equal in length and two equal interior angles.
c. Scalene triangles have all different side lengths and different interior angle measures,
